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SPINNING MODE SOUND PROPAGATION IN DUCTS WITH

ACOUSTIC TREATMENT AND SHEARED FLOW

Edward J. Rice

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio

Summary and discussion of the recent papers on this subject is

given in Ref. 4. Spinning mode sound propagation with

The propagation of spinning mode sound was con- an axially uniform boundary layer was presented in

sidered for a cylindrical duct with sheared steady flow. Ref. 5. Comparisons of theory and experimental data

The calculations concentrated on the determination of were presented showing reasonable agreement. The

the wall optimum acoustic impedance and the maximum above studies are very important since they demonstrate

possible attenuation. Both the least attenuated and the necessity of considering boundary layer effects, but

higher radial modes for spinning lobe patterns were they do not include a parametric study of the problem

considered. A parametric study was conducted over a which can be immediately used for suppressor design

wide range of Mach numbers, spinning lobe numbers, purposes. Current interest in sound propagation with

sound frequency, and boundary layer thickness. A cor- sheared flow is apparent in two recent papers. (6-7)

relation equation was developed from theoretical con- Reference 6 presents a parametric study of the optimum

siderations starting with the thin boundary layer approx- impedance usihg the least attenuated axisymmetric mode.

imation of Eversman. This correlation agrees well with Some calculations are presented for spinning modes.

the more exact calculations for inlets and provides a Reference 7 presents spinning mode calculations but no

single boundary layer refraction parameter which deter- optimization is attempted.

mines the change in optimum wall impedance due to re-

fraction effects. The purpose of this paper is to present a parametric

study and a correlation of the results for the effect of

Introduction axially uniform boundary layers on the propagation of

Noise attenuation data using inlet suppressors, with spinning mode sound in an acoustically lined cylindrical
duct. A wide variation of steady flow Mach number,

wall treatment only, have pointed out two phenomena

which have required additional study. First, the noise boundary layer thickness, sound frequency parameter,
and spinning lobe number were considered. The em-

attenuation was much larger than had been anticipated and spinning lobe number were considered. The em-

from flow duct tests or from axisymmetric sound propa- phasis was on the least attenuated radial mode for the
various spinning lobe numbers; however, the second and

gation theory. Second, large attenuations were ob-
fifth radial modes for a seven lobe pattern were also

served with much higher porosity (low acoustic resis-

tance) acoustic liners than would have been anticipated analyzed.

from previous optimization studies. A recent paramet- The analysis consisted of locating the optimum wall

ric study of the optimum wall impedance for the least impedance (at which maximum possible sound attenuation

attenuated spinning mode
( 1 ) 

has shown that spinning occurs) for the previously discussed wide range of vari-

modes could be anticipated to attenuate much faster than ables.

axisymmetric modes in an inlet with wall treatment

only. This has helped explain the first point raised A major objective of this study was to obtain a cor-

above. It was suspected that the bulk of the answer to relating equation to unify the results of the parametric

the second point above involved the effect of the steady study. Since the correlation is quite complicated, ap-

flow inlet boundary layer on the optimum wall imped- proximate expressions are developed that more clearly

ance. This study was thus initiated to extend the work demonstrate the effect of the variables involved and that

of Ref. 1 (spinning mode propagation with acoustic are sufficiently accurate for first estimates in acoustic

treatment) to include the boundary layer effects. This liner design.

paper will concentrate on the optimum wall impedance

and maximum possible sound attenuation and the corre- Symbol

lation of these results with the pertinent variables in- A specific acoustic admittance (1/t)

volved.
A 0  specific acoustic admittance - uniform or slip flow

The effect of boundary layers on sound propagation B 0  optimum resistance coefficient for circular duct

in acoustically lined ducts has been considered in the with slip flow (see Eq. (32) and Table I)

past for axisymmetric mode (nonspinning) propagation

(e. g., Refs. 2 and 3), and an extensive bibliography



B optimum reactance coefficient for circular duct j dimensionless quantity (see Eq. (A-3))

with slip flow (see Eq. (33) and Table 1) 6 boundary layer thickness, m
c speed of sound, m/sec 6* boundary layer displacement thickness, m
D circular duct diameter, m e dimensionless boundary layer thickness, 6/r 0
F boundary layer refraction function (see Eq. (27)) 5 specific acoustic impedance (also used for optimum

f frequency, Hz value with a finite boundary layer thickness)

G boundary layer shape function (G = (y/6)1/7 for t0 optimum specific acoustic impedance with zero

1/7 th power profile) boundary layer thickness (slip flow at wall)

11  integral function across boundary layer (see Eq. 7 frequency parameter (fD/c)
(A-6)) 0 specific acoustic resistance, Real (C)

12 integral function across boundary layer (see Eq. 00 optimum specific acoustic resistance when 6 = 0,
(A-7) or Eq. (28) for 1 / 7 th power profile) Real (to)

i 0 boundary layer momentum thickness, m

Jm Bessel function of first kind of order m x sound wavelength, m
K factor in axial wave number, see Eqs. (3), (9), v kinematic viscosity, m2/sec

and (10)

k c/c, m- 1  nondimensional radial coordinate (r/r 0 )
p density, kg/m 3

M axial steady flow Mach number (function of radial

coordinate) a attenuation coefficient (see Eq. (10))

MO  axial steady flow Mach number - free stream O0  maximum possible attenuation coefficient when

uniform value 6 = 0

m spinning mode lobe number T propagation coefficient (see Eq. (10))

P acoustic pressure, N/m 2  P angular coordinate, rad

p part of acoustic pressure which is function of yp phase of eigenvalue, ca, deg

radial coordinate (see Eq. (3)), N/m 2  x specific acoustic reactance, Imag (C)

Q 1 + iMO(a + iT) or 1 - MKO x0  optimum specific acoustic reactance when 6 = 0,

R amplitude of eigenvalue a Imag (C0 )

(R ratio of optimum resistance to optimum reactance W circular frequency, rad/sec

for uniform flow (no boundary layer), - 00/ 0  Subspripts:

r radial coordinate, m j indicate jth radial mode

r0  circular duct radius, m r radial component

t time, sec
Theoretical Model

V axial steady flow velocity (function of radial coor-
dinate), m/sec In the following sections the analytical approach will

V0  axial steady flow velocity - free stream value, be outlined. The standard sound propagation theory will

m/sec first be reviewed to establish the methods and terminol-

ogy used in this paper. The method of obtaining the
least attenuated mode optimum impedance will then be

x axial coordinate, m presented. Calculated results of the parametric study

y distance from the wall in the boundary layer, m with boundary layers will next be presented followed by
the correlation equations which unify all of the calculated
results. Finally, some approximate expressions will be

boundary layer (y/6) developed which are useful in illuminating the roles of
Z acoustic impedance (P/vr), kg/m 2 /pec the several variables considered here.

a complex radial eigenvalup (a = Ri 2 ) The geometry and steady flow profile considered

dimensionless quantity (see Eq. (4-4), appendix) here are as shown in Fig. 1. The duct is circular with

p a(1 - 6/r 0) no splitter rings or hub. The boundary layer velocity
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profile is linear near the wall and has a 1/7
th 

power de- i (5)
pendence outside of this linear region. The steady flow r pw(1 - MK) ar

is assumed to be uniform in the central region of the
Defining a nondimensional radial variable

duct outside of the boundary layer.

_ r (6)
_Spinning Mode Propagation Theory With 0
a Boundary Layer

where r 0 = outer wall radius, Eq. (4) becomes
Certain assumptions are common in all of the theo- wherer0 = outer wall radius, Eq. (4) becomes

retical development which follows. Only in the boundary d
2  

1 + 2 dM1 dp
layer are steady flow gradients considered. The soft 2 I (1 - MK) d J d
walls are assumed point reacting and of uniform imped-

ance. These assumptions imply that no waves propagate 2 MK)2 m2

within the liner backing cavity (prevented by honeycomb 
1  2

cells), and that any perforations are closely spaced com-

pared to a wavelength of sound. No end reflections are

considered; that is, the soft duct is sufficiently long to

render the reflections at the duct termination unimpor- wr 0_fD
tant or the mode is well enough cut on so that no end re- 7 = - - (8)

flection will occur. A cut-on mode is defined here as a re c

propagating mode; the frequency parameter (7) is suffi- Defining K as
ciently high so that axial propagation occurs. Only very

near cut-off will this assumption (no end reflection) be a K = T - ir (9)

problem. Below cut-off the modes carry very little en- gives for the axial exponent,
ergy due to their out-of-phase pressure-velocity rela-

tionship, and well above cut-off the end impedance
(9 ) 

is -ikKx = -k(a + i)x (10)

such that very little reflection will occur. , It is further
which indicates that the attenuation is determined by a,

assumed that the sound pressure level is sufficiently low

so that the linearized acoustic wave equation is valid. and the axial propagation speed is inversely proportional

The linearized equations should be adequate except per- to T.

haps very near the rotor, when shock waves are gener- Uniform velocity region. In the central uniform
ated, or where near sonic flows exist. velocity region [ - 1 - (6/r 0 ) or r - ro - 6], the Mach

The wave equation with transverse (perpendicular number gradient disappears (dM/d = 0) and Eq. (7) be-

to wall) steady flow gradients is given by: (3) comes Bessels' differential equation with standard modal

solutions

1 a2P 2M 82
P +M 2 

2p 2p SM vr _ 2
P =

c
2 at

2  c ax at x
2  ar ax m ) (11)

(1)
where the j subscript indicates that an infinite set of

where in cylindrical coordinates modal solutions are possible. This discussion will be

2 
2

P 1 aP + 1 +2p 2 0 restricted to the least attenuated radial mode and the j
Vp + P + 2 + 2 (2) will be dropped for brevity. The attenuation and propa-

r r r a 2 x gation coefficients are related to the eigenvalue a by

Solutions are sought in the form:

1-M
0

(I _ M2) (a

P = p(r)eiwt- i m
e

- i k K x  
(3) a + iT = -0 - (12)

Combining Eqs. (1) to (3) yields 1 - M

d
2

P + 1 2Kr dM] dp The ratio of the pressure slope to the pressure

dr
2  r (1 - MK) dr dr evaluated at the boundary layer, is given by

+ k2 (1 
2- MK K2 1- P= 0 (4) m - fl

Jm +
1

( )

r2 Jm(13)

where k = w/c, and use was made of the momentum =1-(6r) 1

0equation
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which provides the boundary condition to start the Runge- profile provides a wall shear stress that is commensu-

Kutta integration in the boundary layer and where rate with the free stream velocity and boundary layer

thickness assumptions. The velocity profile near the
a (= -_ (14) wall was derived from shear stress considerations given

in Ref. 12.

When the boundary layer is ignored (slip condition at In the laminar sublayer near the wall the velocity

the wall), continuity of particle displacement is used at profile can be expressed as
the wall. The specific acoustic impedance result is

= irmQ
2  (15) V 0  20225 V ) (18)

Jm+l(Y)
ma J(-) - m where

Jm(a)

where y 
= 
r - r (19)

Q = + iM( + i) = 1 - MK (16) is the distance from the wall, V0 is the free stream ve-

locity, 6 is the entire boundary layer thickness, and v

Boundary layer region. When a velocity gradient is the kinematic viscosity.

exists, closed form solutions of Eq. (7) do not exist

except for special cases such as a linear velocity pro- Outside of the laminar region the velocity profile

file. (10) Thus a Runge-Kutta integration of Eq. (7) was was assumed to be

performed over the boundary layer with Eq. (13) as a 1/7

starting point. More detail will be given in the Calcula- V - 1 (20)

tion Procedure section. The boundary layer profile was V 0

assumed to be linear near the wall with a 1 /7th power At
relation used over the rest of the boundary layer.

At the wall M = 0, and the specific acoustic wall = 83. 8 (6 (21)

impedance can be calculated from

the velocity predicted by Eqs. (18) and (20) are equal and
= -l. (17) the transition from laminar to turbulent profile is made.

Sdp/d I A slight change in slope occurs at the transition point

where p and dp/d4 at 4= 1 are provided by the since no attempt was made to model the transition re-

Runge-Kutta integration process. gion.

The steady flow velocity and slope in the form nec-

Boundary Layer Velocity Profile essary for use in Eq. (7) are in the laminar sublayer,

It was concluded in Ref. 11 that a linear velocity 3/4

profile with slip could be used to approximate the actual M =- 0.225 0 (1 -) (22)

turbulent velocity profile. This would provide an ade- 6

quate approximation if the boundary layer shape factor

(6*/1) and displacement thickness (6*) were matched, and

This procedure greatly reduces the number of points dM 0. 0225 M 0 r 0 (MO\3/4

required in the integration and is probably the sensible d( 6 (23)

procedure to follow when a great number of calculations

are to be made. In this paper, however, a limited num- and in the turbulent region,

ber of calculations were intended with the results being

correlated for future use. The more conventional ap-= 0= MO r(1 1/7 (24)

proach using an adequate description of the entire bound- 6

ary layer was thus used to eliminate the possibility of

an unforeseen error due to an unnecessary assumption. and

This did, however, require that at least 100 points be dM M (25)
used in the Runge-Kutta integration across the boundary d 7(1 - )

layer.

Note that in the laminar sublayer the boundary layer
The following description of the boundary layer thickness (6) occurs in the Reynolds number (M 0c6/v)
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without duct size (r 0 ) scaling. Thus the laminar profile for propagation in the boundary layer described by Eq.
does not precisely scale with duct size and the size of (7). This procedure is very efficient since numerical

the duct must be specified. For all calculations in this integration is necessary over only a small portion of the

paper a duct radius of r 0 = 0. 815 meter (36 in. ) was duct (the boundary layer). Also modal correspondence

used. The scaling error should be small since the lami- or identification is quite simple since a predetermined

nar region is only 2 percent or less of the boundary layer mode is specified in the uniform flow region. This pro-

for typical Reynolds numbers of interest. cedure is similar to that used in Ref. 5.

It should be recognized that any velocity profile used Equation (7) is solved by Runge-Kutta integration

is an approximation since the effect of an acoustic liner (using 100 steps) through the boundary layer using Eqs.

on the profile near the wall is not known at this time. (22) to (25) to specify the Mach number and its slope.

When the wall is reached in the integration, the pressure

Calculation Procedure and its slope are used in Eq. (17) to calculate the re-

quired wall impedance.
The calculation procedure will be outlined first for

the uniform flow case (no boundary layer) since the Sample results of this calculation are shown in

philosophy can be most easily explained and the boundary Fig. 3. These are similar to the curves of Fig. 2 except

layer case is then a simple extension, that only a single damping value curve is shown for each

boundary layer thickness. The optimum impedance is

Uniform Flow found within each one of these contours and can be esti-

mated by the impedance value at the round tip of the tear-
The intention here is to generate constant attenua- drop shaped contour. For the results presented in the

tion curves in the wall impedance plane for a particular next section the contours were further refined from those
mode. Where the closed curves of constant damping de- shown in Fig. 3. However, even for the sample curves

generate to a point, the maximum possible sound power shown here, it is evident that an extremely large drop in
attenuation is determined as well as the optimum wall optimum resistance occurs when the boundary layer is
impedance. This procedure for the uniform flow case increased.
without boundary layers is explained here and illustrated

in Fig. 2 for M0 = -0.4, 7 = 10, and m= 7. Results of Calculations

First a desired constant damping value is selected The calculation procedure described in the previous
(such as c = 0.01 in Fig. 2). Next, a series of propa- section was exercised with a wide range of input varia-
gation coefficients T values are selected. These are bles. Mach numbers from -0. 8 (inlet) to +0.6 (exhaust),
in turn (along with a) used in Eq. (12) to calculate the spinning lobe numbers (m) from 3 to 50, frequency pa-
eigenvalue a, then Q (Eq. (16)), and finally the acous- rameters (1) from 5 to 50, and boundary layers up to
tic impedance t from Eq. (15). Each impedance value 30 percent of the radius were used. The purpose of this
(0 + iX = ) is normalized by 71 and plotted in Fig. 2. section is just to present the results and point out the
By selecting a new damping value (a) the series of con- extreme magnitude of the boundary layer effect in the in-
tours are generated. The optimum impedance and max- let (negative Mach number). The effect in the exhaust
imum damping occur where the tear-drop shaped con- duct is much more moderate. Since the results are
tours degenerate to a point, from a numerical integration where no closed form solu-

tion exists, they may be looked upon as extremely re-
Boundary Layer peatable computer experiments of limited use, except to

A similar procedure to that of the uniform flow note trends, until they are unified and correlated. The

case is followed with a boundary layer. Again a and T correlation of the results will be performed in the next

are selected and Eq. (12) is used to calculate the eigen- section.

value a. Equations (13) and (14) are used to calculate The results of interest in this paper are the optimum
1/p dp/d? at the boundary layer edge. This pressure- acoustic impedance and the maximum possible sound
pressure slope value is used to start the Runge-Kutta power attenuation obtained at this optimum impedance.
integration through the boundary layer. This integra- This section contains results only for the least attenu-
tion transforms 1/p dp/d at the boundary layer edge ated spinning modes. Higher order radial modes are

to 1/p dp/d4 at the wall. Equation (17) is then used to deferred to a later section. Note also that the frequency

calculate the wall impedance. This amounts to using parameter (q) is always selected so that the modes prop-
the standard well known solution (Eq. (11)) in the uni- agate. This was done to simplify the correlation pro-
form flow region and deriving from this solution the cedure and not because of limitations of the calculation
boundary conditions necessary for the unknown solution
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procedure. Also propagating modes are usually of most boundary layer thickness, not much change occurs in the

interest. optimum resistance ratio (0.96 s 0/00 5 1.05). Recall

that for the same conditions (m = 7, ql 
= 

10) for an inlet

The following results have been normalized by their (M 0 = -0.6) the optimum resistance ratio changes by

counterpart with no boundary layer. This will increase several orders of magnitude as 6/A was varied over a

the ease of use since the zero boundary layer thickness similar range (see Fig. 4). Although the reactance ap-

results are quite easily obtained. pears to change substantially, this is due to the method

of presentation as a ratio. The actual reactance changes
Inlet Conditions - Negative Mach Number from about -0. 31 to zero in this boundary layer thickness

Figure 4 shows the results for the optimum resis- range. The maximum damping ratio starts to increase

tance ratio as a function of boundary layer- wavelength somewhat at 6/ 
= 

0. 25 (6/r 0 = 0.05) and has increased

ratio for negative Mach numbers (inlets). This ratio by only 30 percent at 6/A = 1 (6/r 0 = 0.2) which repre-
sents an extremely large boundary layer.

compares the optimum resistance with and without a

boundary layer. Note that the full boundary layer thick- It should be recognized that the model used here is

ness is used here. If displacement thickness (6*) were not necessarily valid for an exhaust duct. Exhaust ducts

desired instead it could be estimated as 6/8. Note the are usually annular and the velocity profile is probably

extreme reduction of optimum resistance with increasing dominated by the rotor and stator properties rather than

boundary layer thickness particularly for large Mach a simple boundary layer. The conclusion to be drawn

numbers and frequency parameters. Note also that there here should be that all things being equal (except the flow

is a frequency effect beyond that of wavelength which is direction) the exhaust duct optimum impedance is much

accounted for in the abscissa (6/X). Also the Mach num- less sensitive to sound refraction effects than is the inlet

ber effect cannot be simply accounted for by using an optimum impedance.

effective wavelength [X(1 + M0 )]

Spinning lobe number (m) has an effect upon 0/00 Correlation of Results

but this effect is not so dramatic as that of inlet Mach The correlating equations discussed below are de-

number or frequency. It will be found in the next section rived in the appendix where assumptions leading to the

that these curves are all similar in shape with the roll- correlations, deletions, and empirical corrections are

off value of 6/A being a function of the variables in- discussed. The correlations are considered for inlets

volved. (negative Mach number) only since there the boundary

A sample of the optimum reactance ratio is shown in layer effects are large while they are small for exhaust

Fig. 5 as a function of for m = 7, = 10, and for ducts. First, the complete correlation equations are
Fig. 5 as a function of 6/ for m = 7, 4 = 10, and for

several inlet Mach numbers. The results (for a given presented which provide a very adequate unification of

M0 ) increase at first to about double the 6/X = 0 value the calculations described in a previous section. Since

(X/X = 1) and then gradually fall off with increasing these expressions are still quite complicated it is valu-

boundary layer thickness. Note that both x and X0 are able to look at more approximate expressions which bet-

ter show the effects of the variables involved.
negative.

The change in mode damping (u) is shown in Fig. 6. Complete Correlations

The maximum possible attenuation falls off very little

until extremely large boundary layers are encountered. The expression for the optimum acoustic impedance

This implies that if the optimum impedance could be for spinning modes in a circular inlet (M0 - 0) with

properly accounted for in a liner design, the peak atten- steady sheared flow is given by (see appendix)

uation need not suffer much of a loss due to the boundary (1 + E)t 0

layer. - (26)
1 - iFI 0

Exhaust Conditions - Positive Mach Number where t0 is the optimum acoustic impedance without a

Figures 7(a), (b), and (c) contain calculated results boundary layer (slip flow), e = 6/r 0 , and F is the ex-

for optimum resistance, reactance, and damping for pression

positive Mach number. These results were calculated r(6//) / 2

with seven spinning lobes (m=7), =10, and M 0 =+0.6. MO(-2M)-4(+2M0)(+M

The boundary layers contained in the span of the abscissa 4I2(1+M0)2

were from 1/2 to 20 percent of the duct radius. (27)

In spite of the large Mach number and range of The quantity 12 contains all of the boundary layer shape

6



information and for a 1/7th power velocity profile is ex- least attenuated spinning mode calculations, samples of

pressed as which were previously shown in Fig. 6. This correlation

SM 0 \ is completely empirical in contrast to those for the re-

1 +- 10 +-1 sistance and reactance ratios. The damping correlation

2 4 9 (28) is shown in Fig. 10 by the solid curve while the previous-

(1 + MO)2 ly calculated points are shown as symbols. Again the

results are shown as a ratio; maximum damping with a

The quantity in the denominator of Eq. (27) is then boundary layer divided by maximum damping with 6 = 0

2 MO ( !) - 0(slip flow).I2(1 + MO) = 1 + 1 + 1 +- (29)
4 9 4 The correlation is given by

The last term in the brackets in Eq. (27) is generally a (34 1
small (identically zero at MO = -0. 5) and most of the a (34)
lobe number (m) effect is carried in the t0 term in 1 +

Eq. (26). 1 + MO

Equation (26) can be further reduced by taking real The maximum attenuation ratio can also be calculated
and imaginary parts yielding using Eq. (34), since the maximum attenuation is pro-

0 1 + E portional to the damping coefficient for single modes. ( 1 )

(02 2) (30) Zero boundary layer thickness maximum attenuations for
0 1 + 2F0 + F2  

spinning modes are found in Ref. 1.

(1+ F 0 Approximate Correlations
(1 + C) + +X

0 It is desirable to simplify the resistance and reac-
(2 (31) tance correlations and reduce them to more universal or

0 1 + 2FX0 + F2 0 + general curves. Single correlating curves can be ob-

tained for the optimum resistance and reactance ratios
The zero boundary layer thickness input parameters with only a small loss in accuracy. 'This will be done in

to Eqs. (26), (30), and (31) can be estimated from Ref. 1 two steps. First some approximations will be made to
as collapse the optimum resistance and reactance ratio

0 R (32) correlations, and second some more gross approxima-

(1 + M 0)2  tions will better reveal the effects of the major variables.

-B 1 Acoustic Liner Design Correlations

X0, .(33)

(1 + MO)2 In Table I it is apparent that B0 R 4BX which is

fairly accurate except at m = 0 and 1 (the exact ratio of

valid for propagating modes. The quantities B 0 and Be/Bx could be used here). This implies that (see Eqs.

B are found in Table I (reproduced from Ref. 1 for (32) and (33))

convenience) for the least attenuated spinning mode with

m lobes. 00 s - 4XO (35)

Equations (30) and (31) were used along with Eqs. This can be used in Eqs. (30) and (31) to derive

(27) and (28) to calculate the normalized resistance and 8 1
reactance ratios using all of the conditions shown on 0- 1 (36)

Figs. 4 and 5. The results are shown in Figs. 8 and 9 2 0

as curves along with the previous more exact calcula-

tions shown as point symbols. The agreement is seen to and

be very adequate for the resistance ratio and quite ac- 1 - 4F00

ceptable for the reactance ratio. As discussed in the 1 (37)

appendix, a slight empirical correction was made to the 0 1 - F00 + (F0 0 )2

correlation equations to better fit the resistance ratio.

No special measures were taken to fit the reactance. Now it is apparent that the optimum resistance and re-
actance ratios are functions of only a single quantity,

A correlation was obtained for the damping of the F0 0 . This quantity is used as the independent variable

7



to plot Eqs. (36) and (37) in Figs. 11 and 12 which also Next use Eq. (29) and ignore the M 0 /4 term. There-

contain the previously developed calculated points. The fore

collapse of the resistance calculations onto a single F o MO (43)
curve is seen to be very good in Fig. 11, while some 2

scatter is seen in the reactance ratio for very large
boundary layers in Fig. 12. Again, this reactance errorto obtain

is not significant for liner design purposes. 0.4 RMO (44)

Note that F is negative for negative Mach number ml/2(1 + M 0)
2

and thus -F0 0 was used in these two figures. The term

(-4F00) causes the initial increase in the reactance ratio And finally from Eqs. (38) and (39)

while the term (F00 )
2 

causes the ultimate roll-off in 1 + M 0  2

both ratios. 0 s 0.6 m +MO2 (45)

Equations (36) and (37) should be sufficiently accu-

rate for inlet liner design purposes. The quantity F is and

calculated from Eq. (27) and 00 is calculated from 3. 2 (1 + MO)2

Eq. (32) using B 0 values from Table I. X_ - (46)

X0 M0 7(6/A)
Further Approximations to Illustrate the Effect Recall that these expressions are valid only for
of the Variables (-F00) > 1, and for the least attenuated spinning mode.

It is interesting to look at the correlating equations Some observations can be made concerning the effect of

for large (-F00 ). Equations (36) and (37) can be written boundary layer refraction on the optimum impedance of

in the limiting forms acoustic liners. Note that reductions in these equations

mean increased refraction effects. The extreme sensi-

- 1 I -F 00 > 1 (38) tivity to inlet Mach number and to the frequency parame-

80 (F0) 
2  

ter to a slightly smaller extent are evident in the equa-

tions. This sensitivity was of course seen in the more

-4 exact calculated results. The higher the spinning lobe

_ JO (39) number the less the effect of sound refraction.X0  F00

Thus 0/00 varies with the inverse square power and It is also interesting that there is a frequency effect

X/x 0 with the inverse of (-F00 ). A comparison of Eqs. beyond that found in 6/A. Also it is not sufficient to use

(38) and (39) with Figs. 11 and 12 show an adequate ap- an effective wavelength Xeff = (1 + M 0 )X to account for

proximation for large (-F00 ). the Mach number effect.

A rough approximation for B 0 as seen in Table I To determine whether these approximate expres-

can be given by sions (Eqs. (45) and (46)) can be used and in fact whether

boundary layer refraction must be considered, the nomo-

B0  . 8 (m 0) (40) graph of Fig. 13 can be used. This nomograph deter-

m
1 / 2  

mines the values for which (-F00 ) = 1. For example,

where m is the lobe number. This gives the approxi- let M 0 = -0. 5 and suppose a lobe pattern with 10 lobes

mation (using Eq. (32)) is suspected. A value of 
2

6/v 0 = 2.25 is read off the

ordinate. Now suppose that the boundary layer displace-

0 0. 8 ] (41) ment thickness is 0.0028 ro . The boundary layer thick-
ml1/2(1 + M0)2 ness for purposes of the present correlation is 6/r 0 =

0. 0224 (6 = 86* for 1/7
t h 

power velocity profile). Thus

Further assume that the first term in Eq. (27) dominates 72 = 100 or tj = 10. For a frequency parameter above

the second term. This assumption is usually true. Also 10, the boundary layer refraction will cause sufficient

drop the empirically determined term 1/2(1 - 2MO), change to alter the liner design and the regime of validity

which is similar to one for most practical inlets. Then of Eqs. (45) and (46) is being approached.

Eq. (27) yields

F MO(6/X) Refraction Effect on Higher Order Radial Modes
F (42)

2-(1 + M 0 )
2  The correlations presented in the previous section

were for the least attenuated radial component of a spin-

ning mode. It is of interest to determine whether the

8



correlation is sufficiently generalized to include propa- -- FMO(/A) I BO
-F 0  LL(50)

gating higher radial modes. -F0 (50

Equations (36) and (37) must be generalized to apply

to the higher order radial modes. First Eq. (35) is al- Increases in the bracketed quantities in Eq. (50)

tered to become will increase the boundary layer refraction effect and the

00 - 0 (47) inverse is also true. The parameters which obviously

increase refraction effects are increased boundary layer

where 61 was 4 for the least attenuated radial mode but thickness (6), increased frequency (through both X and

is higher than 4 for the higher radial modes. The anal- q), and increasingly negative Mach number (inlets). At

ogies to Eqs. (36) and (37) can then be easily derived high negative Mach number, the (1 + MO) 2 quantity is by

from Eqs. (30) and (31) and are expressed as far the dominant term. Recall that 12 roughly cancels

-a 1 ) one of the (1 + M0 )2 terms (see Eq. (29)). More subtle

00 2 (48) effects occur due to the Be term. The quantity B 0 is

0 1 F0 + (F00 ) seen to decrease with increasing lobe number (m) in ta-

and ble I, and for any given value of (m), B0 also de-

and creases with higher order radial mode number. Thus

1 - RF00 the effect of boundary layer refraction is diminished for

-X 2 (49) higher order spinning and radial mode numbers.
0 1 2 F00 + (F00)2

All of the boundary layer shape information is con-

These expressions are shown as curves on Figs. 14 tained in the integral 12 (see appendix). Since all of the

and 15 along with the exact calculations for the second results in this paper were for similar velocity profiles,

and fifth radial modes of a seven-lobe spinning mode. no quantitative statements about 12 will be made at this

For the second radial mode R = 5. 9 and for the fifth time.

radial mode l = 10. 1 was used. The agreement be-

tween the exact calculations and the correlations are Although no claims have been made about the opti-
mum resistance and reactance ratio correlations fitting

seen to be excellent for the optimum resistance ratio
the exhaust duct optimization calculations, the develop-

tance ratio deviates somewhat for higher values of ment in the appendix was general until the small empir-
tance ratio deviates somewhat for higher values of

icism was added. Equation (50) does not contain the
(-FOO), as did the optimum reactance ratio for the least icism was added. Equation (50) does not contain th

attenuated mode. The reactance correlation could easily empiricism and could be easily altered for use with

be improved if it were considered necessary. A slight positive Mach number by dropping the minus signs. Re-

error in reactance is not critical in a liner design since call that only qualitative approximations are considered

it will only slightly change the frequency at which peak here. The quantities 6, X, i, and B0 have the same
effect as in the inlet case, and 12 still roughly cancels

attenuation occurs. Resistance is much more critical 2

since it will determine if the maximum attenuation can one of the ( + M t erms. However, the remaining

be approached at all, and the effect of a boundary layer (1 + M0 ) term now decreases F00 instead of increas-
on the optimum resistance is much greater than on the ing it as in the inlet case. For instance, the ratio of the

optimum reactance. F00 values between minus and plus Mach numbers at

IM01 = 0.5 is a factor of 9. Thus the boundary layer in

Because of the way in which the correlating equa- the exhaust duct would have to be nine times that in the

tions are normalized they seem to have general validity inlet duct (all other terms being equal) to start produc-

for any propagating mode. This normalization involves ing a significant refraction effect. The divergence be-

the use of the zero boundary layer or slip-flow solutions. tween the two cases (±M0 ) is even more pronounced than

the simple calculation above suggests. This can be seen

Discussion of Boundary Layer Refraction Parameter in Eq. (36). For inlets, the -(1/2)F0 0 term is actually

positive and both terms in the denominator cause a fall-
It is apparent from the previous discussions of re- off in 0/00. However, for exhaust ducts -(1/2)F0 0 is

sults that the single parameter (-F00 ) pretty well deter- negative and first causes an increase in 0/00 before
mines the boundary layer refraction effects which be- the last term (F00)2 takes over and causes a fall-off.

come important when -F00 > 1 for an inlet. The dis- This behavior can be seen in Fig. 7(a).
cussion will be limited here to the alteration of the opti-

mum resistance which is by far the dominant effect. Concluding Remarks

It is interesting to look at the parameter in the With the optimum impedance information presented
following form here and the spinning mode damping information of

9



Ref. 1, a design procedure for open circular inlet ducts be swept by the impedance of interest (0. 55, 0) and the

was formulated which accounts for most of the important attenuation calculation would at first increase. When

effects in the propagation of sound in a conventional the optimum impedance has passed below (due to in-

acoustic liner. creased boundary layer thickness) the selected imped-

ance the attenuation calculation would then show a fall-

Some limitations of the procedure should, however, off in a. Thus the attenuation has first increased and

be recognized. Only propagating modes were considered then decreased as boundary layer thickness was in-

in the development. When a mode is very near or below creased. From these two examples it is seen that the

cut-off, some of the simplified expressions (such as trend of attenuation with boundary layer thickness for

Eqs. (32), and (33)) begin to lose validity. A rotation of off-optimum impedances depends upon the relationship

the equal damping contours (see Ref. 1) occurs as well of the impedance to the optimum impedance.

as the expansion (M0 < 0) or contraction (M0 > 0) con-

sidered here. Also very near mode cut-off, the no end- Conclusions

reflection assumption may cause problems. A uniform

boundary layer was assumed here. In practice, of A wide ranging parametric study was presented

course, the boundary layer is growing with length, which considered the effect of boundary layer refraction

Average values or stepped liners could be used to ap- on the optimum acoustic impedance of the least attenu-

proximately account for this growth. ated spinning mode and a limited number of higher radial

modes in a circular duct. The following conclusions

A 1/7 power velocity profile away from the wall, were made.

merging into linear profile near the wall was assumed

in the calculations. This was felt to be a reasonable ap- 1. Extremely large reductions in optimum acoustic

proximation to what may be encountered in a real inlet. resistance can occur due to the effect of an inlet steady

All of the correlations are presented using the 1/7
t h  flow boundary layer. The refraction effect of the bound-

power boundary layer thickness (6). If a boundary layer ary layer is less pronounced for the optimum acoustic

displacement thickness is available approximate 6 by reactance.

6 = 86*.
2. Boundary layer refraction effects are increased

Further study will be required to determine the in inlets for increasing Mach numbers, frequencies,

sound refraction effects on the optimum impedance of and boundary layer thickness. Inlet refraction effects

exhaust ducts. Although very little sensitivity to refrac- are diminished for higher order circumferential and

tion was evident with the velocity profile used in this radial modes.

study, it is possible that a more realistic profile (for
3. A correlation equation was derived, mainly from

exhaust ducts) may produce a more significant effect.
theoretical considerations, which adequately compares

The calculations in this paper are for the optimum with the more exact calculations for an inlet.

impedance values which are of use even in drawing in-
4. The correlation equation was found to be adequate

ferences about attenuation results for off-optimum im-

pedances. This can best be illustrated by an example. for higher order radial modes.

Suppose a calculation were being made using the param- 5. From the correlation, a boundary layer refrac-

eters given on Fig. 2 with a value of O/ij = 1. 05 (which tion parameter was developed which indicates whether

represents a resistance above the optimum) and x/q = 0. or not refraction should be considered in the design of a

An attenuation coefficient a ; 0. 015 would be calculated specific inlet suppressor.

if a very small boundary layer thickness were used. As

boundary layer thickness is increased the optimum point 6. There is not much inherent loss of peak attenua-

moves down (to lower resistanBe, see Fig. 3) and the tion in an optimized design inlet due to boundary layer

equal attenuation contours (a constant) move down with refraction. That is the maximum possible attenuation of

the optimum. This causes lower damping contours to be a particular mode is a very weak function of boundary

swept past the selected impedance (1. 05, 0) used in the layer thickness until extremely high thicknesses are en-

calculation. Thus the calculated attenuation would mono- countered. The optimum inlet design may have to be

tonically decrease with increasing boundary layer thick- altered to account for refraction effects in order to

ness. Now suppose that a lower resistance had been maintain the peak sound attenuation at a high level.

selected for the attenuation calculation, for instance
0/T 

= 
0. 55 (less than the optimum) and y/ = 0. For 7. The effect of boundary layer refraction on the

very small boundary layers the calculation would yield optimum wall impedance in an exhaust duct is much ess

a 0.01. Now as boundary layer thickness is increased than for an inlet if all conditions (except flow direction)

the higher attenuation contours near the optimum would are the same.

10



Appendix - Development of Correlation Equations With 1/p dp/d a constant at the boundary layer

edge, the right side of Eq. (A-1) is used twice at zero
The purpose of this development is to derive a cor- thickness and at e to form the equality

relation which can be used to unify the optimum imped-

ance calculation results which were obtained by numeri- _ iA + E [p1 + inrA - (rM) 2
]

cal integration in the body of this paper. irA 0 = _ (A-9)
1 + ic7MAI

2

The starting point is an equation from Ref. 8 which

expresses an approximate solution for the propagation of where _A is the optimum wall admittance at E = 0,
sound in a boundary layer velocity gradient and is valid while A is that at a finite E. The quantity (1- MoK)

for thin boundary layer thickness. This equation valid was cancelled since K does not vary if cr and T are

at the boundary layer edge is nearly constant. Use was made of the expression

Idl -(1- MOK)
2 [ikr 0A+ I1--a)] (A-) kr 0 = (A-10)

p dj =1-E 1 + iEkr 0 AI2  Equation (A-9) can be rearranged and using A = 1/

there results

where (1 + )0- iEr12

- (A-2) I(A-

ro  1 - i 1 0

P = (kr0) K + m (A-3)
Equation (A-11) expresses the optimum wall impedance

a = -ikrA + (kr 0 )2 (A-4) with a finite (but small) bolmdary layer thickness
(E =6/r 0 ) in terms of the familiar (see Ref. 1) uniform

A 1 (A-5) or slip flow optimum wall impedance. This is useful

5 provided the other terms in the expression can be eval-

uated.
The quantity A is the acoustic admittance at the

wall, and II and 12 are integrals over the boundary The next step is to evaluate the integrals Ii and 12
layer given by which will require some simplifications. We will limit

f 1 the development to propagating modes so that (see Ref. 1)

I1 = - (A-6) a first order approximation for K is

(i- MKG)
2  

1
K = 7 - ia -1 (A-12)

1 +M 0

12= (1 - MoKG)2 
d (A-7) Thus Ii and 12 can be written (using also (A-8))

The coordinate y is the nondimensional distance from I1 = (1 + MO) 2  
y(A-13)

the wall (y/6). The function G represents the boundary e -1/7 ]2
layer shape and for a 1 /7th power low velocity profile is O + M(1 - 1/7

given by and

G(37)=y71/7(0 sy s 1) (A-8)
12 f1 1 

[1 + M 0 (1 - 31/7)] dy (A-14)

Several simplifying assumptions and two fortuitous (1 + M0 ) 0

observations enabled the development of this complicated

expression into a reasonably simple correlation expres- To this author' s knowledge, I1 cannot be evaluated in

sion. First, it was noted that the damping (a) and prop- closed form but of course 12 can be. Upon integrating

agation (T) coefficients did not significantly change at the Ii numerically, the second fortunate occurrence was

least attenuation mode optimum impedance point as the observed. It was found that up to IMOI = 0.8

boundary layer thickness was increased. This implies 1
that the eigenvalue (note: a not -) is also not a strong I1 1 (A-15)

function of boundary layer thickness (see Eq. (12)) which

in turn implies that the left hand side of Eq. (A-1) can be with an error of less than 9 percent. Equation (A-15)

considered constant for changes in E. This last impli- was found to be approximately true also for a linear

cation evolves from Eqs. (13) and (14). boundary layer with slip where both integrals can be

evaluated in closed form.
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The closed form expression for 12 with a 1/ 7th ve- denominator (iekr 0AI 2) of Eq. (A-l) which may have im-

locity profile is plications in the use of Eversman's result for moderate

boundary layer thickness.

4 The modified form of Eq. (A-11) is then

2 = (A-16)

(1 + M0 )
2  (1 + (A-23)

1 - iF 0

which is Eq. (28) in the main text. The integral Ii is

then taken as the reciprocal of Eq. (A- 16). which is Eq. (26) in the main text. Now if Eq. (A-23) is

used with F from Eq. (A-21) retaining only the first

Let F denote the quantity in the denominator of term in brackets, a quite acceptable fit of the results in

Eq. (A-11) and use Eqs. (A-3) and (A-4) to yield Fig. 4 is obtained. However, the agreement between the

[K 2  )21 exact calculation and the correlation can be improved by
F = 12 - K2 m (A-17) using small empirical corrections. This is not sur-

2 T prising due to all of the approximations made to this

To evaluate F a second order approximation to K
2  point. The simplest possible corrections were made

must be used (since m/7rq also small). From Ref. 1 (linear corrections) and somewhat more sophisticated

one can derive (for propagating modes) curve-fitting procedures could probably improve the

correlation even more.

K- - ( ) (cos 2p + i sin 2(p) (A-18) A Mach number multiplier was inserted into the

1 + M0 2first term of Eq. (A-21). This correction term was

where R and ( are the mode eigenvalue magnitude and 1/2(1 - 2M 0 ) which ranges from 0.7 to 1.3 as Mach

phase at the optimum impedance. Since 9 is usually number varies between -0.2 and -0.8.

small at the optimum (Table II of Ref. 1) The second empirical correction was made to the

second term of Eq. (A-21) which involves the quantity

S(A-19 R
2 cos 2(p which is the real part of the square of the

and the last term of Eq. (A-18) will be ignored. Thus eigenvalue. This is a function of the circumferential

lobe number as well as the radial mode number. Rather

(R) cos 2p than inserting the actual values of R and <p, the term

K2 _ 1 -7m - (A-20) was considered empirically as a function of the lobe
K 2 - -- (A-20)

(1 + MO)2 1 + M0  
number (m). The empirical substitute obtained was

(1/2)m
2

and Eq. (A-17) can be written With these two empiricisms inserted, Eq. (A-21)

F.L . + (A-21) F= ir(6) 2

M s 2 becomes (also use m0 /9 << 1)

12 4(1 + M0 )
2  

(1 + M) (A-2 412 (1+M 0)
2 

M(1-2MO)-4(1+2MO)(+M

where (A-24)

E =2( (A-22) which is Eq. (27) in the main text.

The intent in this appendix was to develop a bound-
was used.

ary layer refraction effect correlation which was as

This is about as far as the approximate theory could theoretically based as possible. In this way the major

be carried (Eq. (A-21)). From here on comparisons effects of the parameters would appear in their correct

must be made with the more exact calculations made in functional form with a minimum of guesswork which

the main text. When the real part of Eq. (A-11) (using usually accompanies a correlation. Small empirical

F in the denominator) was compared to the calculated corrections were then applied to improve the correla-

points in Fig. 4, it was immediately evident that the tion. The final form of the equation would probably

second term in the numerator of Eq. (A-11) had to be never have been derived from purely empirical curve-

deleted. This term (-icril2 ) causes 0/ 0 to go nega- fitting.

tive at moderate boundary layer thickness. Deleting

this term in effect is deleting the small term in the
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Figure 1. - Geometry and steady-flow velocity profile. Figure 2. - Constant attenuation and propagation contours
for the least attenuated spinning mode using displacement
boundary condition. Inlet Mach number, Mo = -0. 4 lobe
number, m = 7; frequency parameter, - = 10; boundary
layer thickness, 6blr = 0.
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Figure 3. - Constant attenuation contours for several

boundary layer thicknesses (6lr o ) for the least attenu- Figure 4. - Effect of boundary layer on inlet optimum resistance
ated spinning mode. ratio for the least attenuated spinning mode with lobe number,

frequency parameter, and Mach number as parameters.
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Figure 5. - Effect of boundary layer on inlet optimum reactance
ratio for the least attenuated spinning mode with Mach number
as a parameter.
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Figure 8. - Optimum resistance ratio, comparison between exact
calculations and correlation for inlets for the least attenuated
spinning mode.
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exact calculation and correlation for inlets for the least
attenuated spinning mode.



LOBE FREQUENCY MACH
NO., PARAMETER, NO.,
m 7r Mo

V 7 10 -0.2
0 7 10 -.4
O 7 10 -.6
A 7 10 -.8
O 7 20 -.4
a 7 50 -.4
D 3 5 -. 4
0 20 20 -.4
V 50 40 -. 41

D

o 0 1 E,
o +I(-FBoI+(FBo 2 -  -",., 2

z 1 NOTE:
-- -FBo > 0 FOR INLETS

",

O

01-

.1 1 10
BOUNDARY-LAYER REFRACTION PARAMETER, -F8o

Figure 11. - Inlet optimum resistance ratio for the least attenuated
spinning mode, unification of'calculations using boundary- layer
refraction parameter.
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